
As we said earlier, neurons are very simple processing
units. Having discussed linear and logistic regression in
Chapter 4, the essential technical details of neural
networks can be seen as slight variations of the same
idea.

Note

Weights and inputsWeights and inputs

The basic artificial neuron model involves a set of adaptive parameters, called weights

like in linear and logistic regression. Just like in regression, these weights are used as

multipliers on the inputs of the neuron, which are added up. The sum of the weights

times the inputs is called the linear combination of the inputs. You can probably recall

the shopping bill analogy: you multiply the amount of each item by its price per unit

and add up to get the total.

If we have a neuron with six inputs (analogous to the amounts of the six shopping

items: potatoes, carrots, and so on), input1, input2, input3, input4, input5, and

input6, we also need six weights. The weights are analogous to the prices of the

items. We’ll call them weight1, weight2, weight3, weight4, weight5, and weight6. In

addition, we’ll usually want to include an intercept term like we did in linear

regression. This can be thought of as a fixed additional charge due to processing a

credit card payment, for example.

We can then calculate the linear combination like this: linear combination =

intercept + weight1 × input1 + ... + weight6 × input6 (where the ... is a shorthand

notation meaning that the sum include all the terms from 1 to 6).

With some example numbers we could then get:

10.0 + 5.4 × 8 + (-10.2) × 5 + (-0.1) × 22 + 101.4 ×

(-5) + 0.0 × 2 + 12.0 × (-3) = -543.0

UnansweredUnanswered

Exercise 21: Weights and inputs

The weights are almost always learned from data using the same ideas as in linear

or logistic regression, as discussed previously. But before we discuss this in more

detail, we’ll introduce another important stage that a neuron completes before it

sends out an output signal.

Activations and outputsActivations and outputs

Once the linear combination has been computed, the neuron does one more

operation. It takes the linear combination and puts it through a so-called activation

function. Typical examples of the activation function include:

identity function: do nothing and just output the linear combination

step function: if the value of the linear combination is greater than zero, send a

pulse (ON), otherwise do nothing (OFF)

sigmoid function: a “soft” version of the step function

Note that with the first activation function, the identity function, the neuron is

exactly the same as linear regression. This is why the identity function is rarely

used in neural networks: it leads to nothing new and interesting.

Note

How neurons activateHow neurons activate

Real, biological neurons communicate by sending out sharp, electrical pulses called

“spikes”, so that at any given time, their outgoing signal is either on or off (1 or 0). The

step function imitates this behavior. However, artificial neural networks tend to use

activation functions that output a continuous numerical activation level at all times,

such as the sigmoid function. Thus, to use a somewhat awkward figure of speech, real

neurons communicate by something similar to the Morse code, whereas artificial

neurons communicate by adjusting the pitch of their voice as if yodeling.

The output of the neuron, determined by the linear combination and the activation

function, can be used to extract a prediction or a decision. For example, if the

network is designed to identify a stop sign in front of a self-driving car, the input

can be the pixels of an image captured by a camera attached in front of the car, and

the output can be used to activate a stopping procedure that stops the car before

the sign.

Learning or adaptation in the network occurs when the weights are adjusted so as

to make the network produce the correct outputs, just like in linear or logistic

regression. Many neural networks are very large, and the largest contain hundreds

of billions of weights. Optimizing them all can be a daunting task that requires

massive amounts of computing power.

UnansweredUnanswered

Exercise 22: Activations and outputs

Perceptron: the mother of all ANNsPerceptron: the mother of all ANNs

The perceptron is simply a fancy name for the simple neuron model with the step

activation function we discussed above. It was among the very first formal models

of neural computation and because of its fundamental role in the history of neural

networks, it wouldn’t be unfair to call it the “mother of all artificial neural

networks”.

It can be used as a simple classifier in binary classification tasks. A method for

learning the weights of the perceptron from data, called the Perceptron algorithm,

was introduced by the psychologist Frank Rosenblatt in 1957. We will not study the

Perceptron algorithm in detail. Suffice to say that it is just about as simple as the

nearest neighbor classifier. The basic principle is to feed the network training data

one example at a time. Each misclassification leads to an update in the weight.

Note

AI hyperboleAI hyperbole

After its discovery, the Perceptron algorithm received a lot of attention, not least

because of optimistic statements made by its inventor, Frank Rosenblatt. A classic

example of AI hyperbole is a New York Times article published on July 8th, 1958:

“The Navy revealed the embryo of an electronic computer today that it expects will be

able to walk, talk, see, reproduce itself and be conscious of its existence.”

Please note that neural network enthusiasts are not at all the only ones inclined

towards optimism. The rise and fall of the logic-based expert systems approach to AI

had all the same hallmark features of an AI-hype and people claimed that the final

breakthrough is just a short while away. The outcome both in the early 1960s and late

1980s was a collapse in the research funding called an AI Winter.

The history of the debate that eventually lead to almost complete abandoning of

the neural network approach in the 1960s for more than two decades is extremely

fascinating. The article A Sociological Study of the Official History of the

Perceptrons Controversy by Mikel Olazaran (published in Social Studies of Science,

1996) reviews the events from a sociology of science point of view. Reading it today

is quite thought provoking. Reading stories about celebrated AI heroes who had

developed neural networks algorithms that would soon reach the level of human

intelligence and become self-conscious can be compared to some statements made

during the current hype. If you take a look at the above article, even if you wouldn't

read all of it, it will provide an interesting background to today's news. Consider for

example an article in the MIT Technology Review published in September 2017,

where Jordan Jacobs, co-founder of a multimillion dollar Vector institute for AI

compares Geoffrey Hinton (a figure-head of the current deep learning boom) to

Einstein because of his contributions to development of neural network algorithms

in the 1980s and later. Also recall the Human Brain project mentioned in the

previous section.

According to Hinton, “the fact that it doesn’t work is just a temporary annoyance”

(although according to the article, Hinton is laughing about the above statement,

so it's hard to tell how serious he is about it). The Human Brain project claims to be

“close to a profound leap in our understanding of consciousness“. Doesn't that

sound familiar?

No-one really knows the future with certainty, but knowing the track record of

earlier announcements of imminent breakthroughs, some critical thinking is

advised. We'll return to the future of AI in the final chapter, but for now, let's see

how artificial neural networks are built.

Putting neurons together: networksPutting neurons together: networks

A single neuron would be way too simple to make decisions and prediction reliably

in most real-life applications. To unleash the full potential of neural networks, we

can use the output of one neuron as the input of other neurons, whose outputs can

be the input to yet other neurons, and so on. The output of the whole network is

obtained as the output of a certain subset of the neurons, which are called the

output layer. We’ll return to this in a bit, after we discussed the way neural

networks adapt to produce different behaviors by learning their parameters from

data.

Key terminology

LayersLayers

Often the network architecture is composed of layers. The input layer consists of

neurons that get their inputs directly from the data. So for example, in an image

recognition task, the input layer would use the pixel values of the input image as the

inputs of the input layer. The network typically also has hidden layers that use the

other neurons´ outputs as their input, and whose output is used as the input to other

layers of neurons. Finally, the output layer produces the output of the whole network.

All the neurons on a given layer get inputs from neurons on the previous layer and feed

their output to the next.

A classical example of a multilayer network is the so-called multilayer perceptron.

As we discussed above, Rosenblatt’s Perceptron algorithm can be used to learn the

weights of a perceptron. For multilayer perceptron, the corresponding learning

problem is way harder and it took a long time before a working solution was

discovered. But eventually, one was invented: the backpropagation algorithm lead

to a revival of neural networks in the late 1980s. It is still at the heart of many of the

most advanced deep learning solutions.

Note

Meanwhile in Helsinki...Meanwhile in Helsinki...

The path(s) leading to the backpropagation algorithm are rather long and winding. An

interesting part of the history is related to the computer science department of the

University of Helsinki. About three years after the founding of the department in 1967, a

Master’s thesis was written by a student called Seppo Linnainmaa. The topic of the

thesis was “Cumulative rounding error of algorithms as a Taylor approximation of

individual rounding errors” (the thesis was written in Finnish, so this is a translation of

the actual title “Algoritmin kumulatiivinen pyöristysvirhe yksittäisten pyöristysvirheiden

Taylor-kehitelmänä”).

The automatic differentiation method developed in the thesis was later applied by

other researchers to quantify the sensitivity of the output of a multilayer neural

network with respect to the individual weights, which is the key idea in

backpropagation.

A simple neural network classifierA simple neural network classifier

To give a relatively simple example of using a neural network classifier, we'll

consider a task that is very similar to the MNIST digit recognition task, namely

classifying images in two classes. We will first create a classifier to classify whether

an image shows a cross (x) or a circle (o). Our images are represented here as pixels

that are either colored or white, and the pixels are arranged in 5 × 5 grid. In this

format our images of a cross and a circle (more like a diamond, to be honest) look

like this:

In order to build a neural network classifier, we need to formalize the problem in a

way where we can solve it using the methods we have learned. Our first step is to

represent the information in the pixels by numerical values that can be used as the

input to a classifier. Let's use 1 if the square is colored, and 0 if it is white. Note that

although the symbols in the above graphic are of different color (green and blue),

our classifier will ignore the color information and use only the colored/white

information. The 25 pixels in the image make the inputs of our classifier.

To make sure that we know which pixel is which in the numerical representation,

we can decide to list the pixels in the same order as you'd read text, so row by row

from the top, and reading each row from left to right. The first row of the cross, for

example, is represented as 1,0,0,0,1; the second row as 0,1,0,1,0, and so on. The full

input for the cross input is then: 1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1.

We'll use the basic neuron model where the first step is to compute a linear

combination of the inputs. Thus need a weight for each of the input pixels, which

means 25 weights in total.

Finally, we use the step activation function. If the linear combination is negative,

the neuron activation is zero, which we decide to use to signify a cross. If the linear

combination is positive, the neuron activation is one, which we decide to signify a

circle.

Let's try what happens when all the weights take the same numerical value, 1. With

this setup, our linear combination for the cross image will be 9 (9 colored pixels, so

9 × 1, and 16 white pixels, 16 × 0), and for the circle image it will be 8 (8 colored

pixels, 8 × 1, and 17 white pixels, 17 × 0). In other words, the linear combination is

positive for both images and they are thus classified as circles. Not a very good

result given that there are only two images to classify.

To improve the result, we need to adjust the weights in such a way that the linear

combination will be negative for a cross and positive for a circle. If we think about

what differentiates images of crosses and circles, we can see that circles have no

colored pixels in the center of the image, whereas crosses do. Likewise, the pixels at

the corners of the image are colored in the cross, but white in the circle.

We can now adjust the weights. There are an infinite number of weights that do the

job. For example, assign weight -1 to the center pixel (the 13th pixel), and weight 1 to

the pixels in the middle of each of the four sides of the image, letting all the other

weights be 0. Now, for the cross input, the center pixel produce the value –1, while

for all the other pixels either the pixel value or the weight is 0, so that –1 is also the

total value. This leads to activation 0, and the cross is correctly classified.

How about the circle then? Each of the pixels in the middle of the sides produces

the value 1, which makes 4 × 1 = 4 in total. For all the other pixels either the pixel

value or the weight is zero, so 4 is the total. Since 4 is a positive value, the

How neural networks areHow neural networks are
builtbuilt

IIII..

In this exercise, consider the following expression that has both weights and inputs:

10.0 + 5.4 × 8 + (-10.2) × 5 + (-0.1) × 22 + 101.4 × (-5) + 0.0 × 2 + 12.0 × (-3) = -543.0

What is the intercept term in the expression?
a) 543.0
b) 10.0
c) -3
d) 5.4?

A B C D

What are the inputs?
a) 8, 5, 22, -5, 2, -3
b) 5.4, 8, -10.2, 5, -0.1, 22, 101.4, -5, 0.0, 2, 12.0, -3
c) 5.4, -10.2, -0.1, 101.4, 0.0, 12.0
d) 43.2, -51.0, -2.2, -507.0, 0.0, -36.0

A B C D

Which of the inputs needs to be changed the least to increase the output by a certain amount?
a) first
b) second
c) third
d) fourth

A B C D

What happens when the fifth input is incremented by one?
a) nothing
b) the output increases by one
c) the output increases by two
d) something else

A B C D

Submit

Below are graphs for three different activation functions with different properties. First

we have the sigmoid function, then the step function, and finally the identity function.

IMPORTANT: Note the different y-axis (vertical) scale in the identity function chart.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Si
g

m
oi

d
 o

ut
p

ut

Input

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

St
ep

 f
un

ct
io

n
 o

ut
p

ut

Input

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Id
en

ti
ty

 o
ut

p
ut

Input

Which of the activations described above gives:
the highest output for an input of 5?

Sigmoid Step Identity

the lowest output for an input of -5? Sigmoid Step Identity

the highest output for an input of -2.5? Sigmoid Step Identity

Submit

Elements of AI Course overview Neural networks How neural networks are built Menu

https://course.elementsofai.com/

value or the weight is zero, so 4 is the total. Since 4 is a positive value, the

activation is 1, and the circle is correctly recognized as well.

Happy or not?Happy or not?

We will now follow similar reasoning to build a classifier for smiley faces. You can

assign weights to the input pixels in the image by clicking on them. Clicking once

sets the weight to 1, and clicking again sets it to -1. The activation 1 indicates that

the image is classified as a happy face, which can be correct or not, while activation

–1 indicates that the image is classified as a sad face.

Don't be discouraged by the fact that you will not be able to classify all the smiley

faces correctly: it is in fact impossible with our simple classifier! This is one

important learning objective: sometimes perfect classification just isn't possible

because the classifier is too simple. In this case the simple neuron that uses a linear

combination of the inputs is too simple for the task. Observe how you can build

classifiers that work well in different cases: some classify most of the happy faces

correctly while being worse for sad faces, or the other way around.

Can you achieve 6/8 correct for both happy and sad faces?

00//88 happy faces classified correctlyhappy faces classified correctly

00//88 sad faces classified correctlysad faces classified correctly

Next section

III. Advanced neural network techniques →

Course overview About FAQ Privacy Policy My profile Sign out

https://course.elementsofai.com/
https://www.elementsofai.com/
https://www.elementsofai.com/faq
https://www.elementsofai.com/faq/privacy-policy
https://course.elementsofai.com/account
https://www.helsinki.fi/
https://reaktor.com/
https://course.elementsofai.com/5/3

